Data Structures, Algorithms, and Applications in JAVA

Sartaj Sahni

ISBN: 9788173715235 | Year: 2005 | Paperback | Pages: 872 | Language : English

Book Size: 180 x 240 mm | Territorial Rights: Restricted

Price: 1350.00

About the Book

Data Structures, Algorithms, and Applications in JAVA (2nd Edition) is the new version of the very popular first edition. It provides a comprehensive coverage of fundamental data structures, making it ideal for use in computer science courses. The author has made the book very user friendly by starting with a gentle introduction, providing intuitive discussions, and including real-world applications. Real-world applications are a unique feature of this text. Dr Sahni provides several applications for each data structure and algorithm design method discussed, taking examples from topics such as sorting, compression and coding, and image processing. These applications motivate and interest students by connecting concepts with their use. Dr Sahni does an excellent job of balancing theoretical and practical information, resulting in learned concepts and interested students. The market-developed pedagogy in this book reinforces concepts and gives students plenty of practice. There are almost 1,000 exercises, including comprehension and simple programming problems, and projects. Additionally, the book has an associated website that contains all the programs in the book, animations, sample data, generated output, solutions to selected exercises, and sample tests with answers.

Contributors (Author(s), Editor(s), Translator(s), Illustrator(s) etc.)

Sartaj Sahni is a Distinguished Professor and Chair of Computer & Information Sciences & Engineering at the University of Florida. He is a member of the European Academy of Sciences, a Fellow of IEEE, ACM, AAAS, and Minnesota Supercomputer Institute, and a Distinguished Alumnus of the IIT, Kanpur. Dr Sahni is the recipient of the 1997 IEEE Computer Society Taylor L Booth Education Award, the 2003 IEEE Computer Society W.Wallace McDowell Award and the 2003 ACM Karl karlstrom Outstanding Educator Award. Dr Sahni received his B.Tech. (EE) degree from the IIT, Kanpur, and MS and PhD degress in Computer Science from Cornell University. Dr Sahni has published over 250 research papers and written 15 texts. His research publications are on the design and analysis of efficient algorithms, parallel computing, interconnection networks, design automation, and medical algorithms.

Table of Content

PARTI  PRELIMINARIES

1. Java Review
  1.1 Introduction
  1.2 Structure of a Java Program
    1.2.1 Stand-Alone Programs and Applets  
    1.2.2 Packages
    1.2.3 Importing Classes and Packages  
    1.2.4 Superclasses and Subclasses
  1.3 The Java Compiler and Virtual Machine
  1.4 Documentation Comments
  1.5 Data Types
  1.6 Methods
    1.6.1 Parameters
    1.6.2 Overloaded Methods
  1.7 Exceptions
    1.7.1 Throwing an Exception
    1.7.2 Handling Exceptions
  1.8 Your Very Own Data Type
    1.8.1 The Class Currency
    1.8.2 The Data Members of Currency
    1.8.3 The Method Members of Currency
    1.8.4 The Constructors of Currency
    1.8.5 Creating Instances of Currency
    1.8.6 The Accessor Methods of Currency
    1.8.7 The Mutator Methods of Currency
    1.8.8 Invoking Methods and Accessing Data Members
    1.8.9 Output and Arithmetic Methods for Currency
    1.8.10 The Method main
  1.9 Access Modifiers
  1.10 Inheritance and Method Overriding
  1.11 Currency Revisited
  1.12 Defining an Exception Class
  1.13 Generic Methods
    1.13.1 The Interface Computable
    1.13.2 The Generic Method abc
    1.13.3 The Interface java. lang. Comparable
    1.13.4 The Interface Operable
    1.13.5 The Interfaces Zero and CloneableObject
    1.13.6 The Wrapper Class Mylnteger
    1.13.7 Using Data Types and Methods as Parameters
  1.14 Garbage Collection
  1.15 Recursion
    1.15.1 Recursive Functions
    1.15.2 Induction
    1.15.3 Recursive Methods
  1.16 Testing and Debugging
    1.16.1 What Is Testing?
    1.16.2 Designing Test Data
    1.16.3 Debugging
  1.17 References and Selected Readings
2 Performance Analysis
  2.1 What Is Performance?
  2.2 Space Complexity
    2.2.1 Components of Space Complexity  
    2.2.2 Examples
  2.3 Time Complexity
    2.3.1 Components of Time Complexity
    2.3.2 Operation Counts  
    2.3.3 Best, Worst, and Average Operation Counts
    2.3.4 Step Counts
3 Asymptotic Notation
  3.1 Introduction
  3.2 Asymptotic Notation
    3.2.1 Big Oh Notation (O)
    3.2.2 Omega (SI) and Theta (9) Notations
  3.3 Asymptotic Mathematics (Optional)
    3.3.1 Big Oh Notation (O)
    3.3.2 Omega Notation (SI) 
    3.3.3 Theta Notation (6)
    3.3.4 Little Oh Notation (o)
    3.3.5 Properties
  3.4 Complexity Analysis Examples
  3.5 Practical Complexities
  3.6 References and Selected Readings
4 Performance Measurement
  4.1 Introduction
  4.2 Choosing Instance Size
  4.3 Developing the Test Data
  4.4 Setting Up the Experiment
  4.5 Your Cache and You
    4.5.1 A Simple Computer Model
    4.5.2 Effect of Cache Misses on Run Time
    4.5.3 Matrix Multiplication
  4.6 References and Selected Readings

PART II  DATA STRUCTURES

5 Linear Lists—Array Representation
  5.1 Data Objects and Structures  
  5.2 The Linear List Data Structure
    5.2.1 Abstract Data Type LinearList
    5.2.2 The Interface LinearList
    5.2.3 The Abstract Class LinearListAsAbstractClass
  5.3 Array Representation
    5.3.1 The Representation
    5.3.2 Changing the Length of a One-Dimensional Array
    5.3.3 The Class ArrayLinearList
    5.3.4 An Iterator for ArrayLinearList
  5.4 Vector Representation
  5.5 Multiple Lists in a Single Array
  5.6 Performance Measurement
  5.7 The Class Java.util.ArrayList
  5.8 References and Selected Readings
6 Linear Lists—Linked Representation
  6.1 Singly Linked Lists and Chains
    6.1.1 The Representation
    6.1.2 The Class ChainNode
    6.1.3 The Class Chain
    6.1.4 Extensions to the ADT LinearList
    6.1.5 The Class ExtendedChain
    6.1.6 Performance Measurement
  6.2 Circular Lists and Header Nodes
  6.3 Doubly Linked Lists
  6.4 Glossary of Linked List Terms
  6.5 Applications
    6.5.1 Bin Sort
    6.5.2 Radix Sort
    6.5.3 Convex Hull
7 Linear Lists—Simulated Pointers
  7.1 The Need for Simulated Pointers
  7.2 Simulating Pointers
  7.3 Memory Management  
    7.3.1 The Class SimulatedSpacel
    7.3.2 The Class SimulatedSpace2
    7.3.3 Evaluation of Simulated Memory Management
  7.4 Comparison with Garbage Collection
  7.5 Simulated Chains
    7.5.1 The Class SimulatedChain 
    7.5.2 Performance Measurement
  7.6 Memory Managed Chains
  7.7 Application—Union-Find Problem
    7.7.1 Equivalence Classes  
    7.7.2 Applications 
    7.7.3 First Union-Find Solution
    7.7.4 Second Union-Find Solution
8 Arrays and Matrices
  8.1 Arrays
    8.1.1 The Abstract Data Type  
    8.1.2 Indexing a Java Array
    8.1.3 Row- and Column-Major Mappings  
    8.1.4 Array of Arrays Representation
    8.1.5 Row-Major and Column-Major Representation
    8.1.6 Irregular Two-Dimensional Arrays
  8.2 Matrices
    8.2.1 Definitions and Operations
    8.2.2 The Class Matrix
  8.3 Special Matrices
    8.3.1 Definitions and Applications
    8.3.2 Diagonal Matrices
    8.3.3 Tridiagonal Matrix
    8.3.4 Triangular Matrices
    8.3.5 Symmetric Matrices
  8.4 Sparse Matrices
    8.4.1 Motivation
    8.4.2 Representation Using a Single Linear List
    8.4.3 Representation Using Many Linear Lists
    8.4.4 Performance Measurement
9 Stacks
  9.1 Definition and Applications
  9.2 The Abstract Data Type
  9.3 Array Representation
    9.3.1 Implementation as a Subclass
    9.3.2 The Class ArrayStack
    9.3.3 Performance Measurement
  9.4 Linked Representation
    9.4.1 The Class DerivedLinkedStack
    9.4.2 The Class LinkedStack
    9.4.3 Performance Measurement
  9.5 Applications
    9.5.1 Parenthesis Matching
    9.5.2 Towers of Hanoi
    9.5.3 Rearranging Railroad Cars
    9.5.4 Switch Box Routing
    9.5.5 Offline Equivalence Class Problem
    9.5.6 Rat in a Maze
  9.6 References and Selected Readings
10 Queues
  10.1 Definition and Applications
  10.2 The Abstract Data Type
  10.3 Array Representation
    10.3.1 The Representation  
    10.3.2 The Class ArrayQueue
  10.4 Linked Representation
  10.5 Applications
    10.5.1 Railroad Car Rearrangement
    10.5.2 Wire Routing
    10.5.3 Image-Component Labeling
    10.5.4 Machine Shop Simulation
  10.6 References and Selected Readings
11 Skip Lists and Hashing
  11.1 Dictionaries
  11.2 The Abstract Data Type
  11.3 Linear List Representation
  11.4 Skip List Representation (Optional)  
    11.4.1 The Ideal Case
    11.4.2 Insertions and Deletions
    11.4.3 Assigning Levels
    11.4.4 The Class SkipNode
    11.4.5 The Class SkipList
    11.4.6 Complexity of SkipList Methods  
  11.5 Hash Table Representation  
    11.5.1 Ideal Hashing
    11.5.2 Hash Functions and Tables
    11.5.3 Linear Probing
    11.5.4 Hashing with Chains
  11.6 An Application—Text Compression
    11.6.1 LZW Compression
    11.6.2 Implementation of LZW Compression
    11.6.3 LZW Decompression
    11.6.4 Implementation of LZW Decompression
    11.6.5 Performance Evaluation
  11.7 References and Selected Readings
12 Binary and Other Trees
  12.1 Trees
  12.2 Binary Trees
  12.3 Properties of Binary Trees
  12.4 Representation of Binary Trees
    12.4.1 Array-Based Representation
    12.4.2 Linked Representation
  12.5 Common Binary Tree Operations
  12.6 Binary Tree Traversal
  12.7 The ADT BinaryTree
  12.8 The Class LinkedBinaryTree
  12.9 Applications
    12.9.1 Placement of Signal Boosters
    12.9.2 Union-Find Problem
  12.10 References and Selected Readings
13 Priority Queues
  13.1 Definition and Applications
  13.2 The Abstract Data Type
  13.3 Linear Lists
  13.4 Heaps
    13.4.1 Definitions
    13.4.2 Insertion into a Max Heap
    13.4.3 Deletion from a Max Heap
    13.4.4 Max Heap Initialization
    13.4.5 The Class MaxHeap
  13.5 Leftist Trees
    13.5.1 Height- and Weight-Biased Min and Max Leftist Trees
    13.5.2 Insertion into a Max HBLT
    13.5.3 Deletion from a Max HBLT
    13.5.4 Melding Two Max HBLTs
    13.5.5 Initialization
    13.5.6 The Class MaxHBLT
  13.6 Applications
    13.6.1 Heap Sort
    13.6.2 Machine Scheduling
    13.6.3 Huffman Codes
  13.7 References and Selected Readings
14 Tournament Trees
  14.1 Winner Trees and Applications
  14.2 The ADT WinnerTree
  14.3 Winner Tree Implementation
    14.3.1 Representation
    14.3.2 Initializing a Winner Tree
    14.3.3 Replaying Matches
    14.3.4 The Class CompleteWinnerTree
  14.4 Loser Trees
  14.5 Applications
    14.5.1 Bin Packing Using First Fit
    14.5.2 Bin Packing Using Next Fit
  14.6 References and Selected Readings
15 Binary Search Trees
  15.1 Definitions
    15.1.1 Binary Search Trees
    15.1.2 Indexed Binary Search Trees
  15.2 Abstract Data Types
  15.3 Binary Search Tree Operations and Implementation  
    15.3.1 The Class BinarySearchTree
    15.3.2 Searching
    15.3.3 Inserting an Element
    15.3.4 Deleting an Element
    15.3.5 Height of a Binary Search Tree
  15.4 Binary Search Trees with Duplicates
  15.5 Indexed Binary Search Trees  
  15.6 Applications
    15.6.1 Histogramming
    15.6.2 Best-Fit Bin Packing
    15.6.3 Crossing Distribution
16 Balanced Search Trees
  16.1 AVL Trees
    16.1.1 Definition
    16.1.2 Height of an AVL Tree
    16.1.3 Representation of an AVL Tree
    16.1.4 Searching an AVL Search Tree
    16.1.5 Inserting into an AVL Search Tree
    16.1.6 Deletion from an AVL Search Tree
  16.2 Red-Black Trees
    16.2.1 Definition
    16.2.2 Representation of a Red-Black Tree
    16.2.3 Searching a Red-Black Tree
    16.2.4 Inserting into a Red-Black Tree
    16.2.5 Deletion from a Red-Black Tree
    16.2.6 Implementation Considerations and Complexity
  16.3 Splay Trees
    16.3.1 Introduction
    16.3.2 The Splay Operation
    16.3.3 Amortized Complexity
  16.4 B-Trees
    16.4.1 Indexed Sequential Access Method (ISAM)
    16.4.2 m-Way Search Trees
    16.4.3 B-Trees of Order m
    16.4.4 Height of a B-Tree
    16.4.5 Searching a B-Tree
    16.4.6 Inserting into a B-Tree
    16.4.7 Deletion from a B-Tree
    16.4.8 Node Structure
  16.5 References and Selected Readings
17 Graphs
  17.1 Definitions
  17.2 Applications and More Definitions
  17.3 Properties
  17.4 The ADT Graph
  17.5 Representation of Unweighted Graphs
    17.5.1 Adjacency Matrix
    17.5.2 Linked Adjacency Lists
    17.5.3 Array Adjacency Lists
  17.6 Representation of Weighted Graphs
  17.7 Class Implementations
    17.7.1 The Different Classes  
    17.7.2 Adjacency-Matrix Classes
    17.7.3 An Extension to the Class Chain
    17.7.4 Linked-List Classes
  17.8 Graph Search Methods
    17.8.1 Breadth-First Search
    17.8.2 Implementation of Breadth-First Search
    17.8.3 Complexity Analysis of Graph.bfs
    17.8.4 Depth-First Search
    17.8.5 Implementation of Depth-First Search
    17.8.6 Complexity Analysis of Graph.dfs
  17.9 Applications Revisited
    17.9.1 Finding a Path
    17.9.2 Connected Graphs and Components
    17.9.3 Spanning Trees

PART III  ALGORITHM-DESIGN METHODS

18 The Greedy Method
  18.1 Optimization Problems
  18.2 The Greedy Method
  18.3 Applications
    18.3.1 Container Loading
    18.3.2 0/1 Knapsack Problem
    18.3.3 Topological Sorting  
    18.3.4 Bipartite Cover
    18.3.5 Single-Source Shortest Paths
    18.3.6 Minimum-Cost Spanning Trees
  18.4 References and Selected Readings
19 Divide and Conquer
  19.1 The Method
  19.2 Applications
    19.2.1 Defective Chessboard  
    19.2.2 Merge Sort
    19.2.3 Quicksort
    19.2.4 Selection
    19.2.5 Closest Pair of Points
  19.3 Solving Recurrence Equations
  19.4 Lower Bounds on Complexity
    19.4.1 Lower Bound for the Minmax Problem
    19.4.2 Lower Bound for Sorting
20 Dynamic Programming
  20.1 The Method
  20.2 Applications
    20.2.1 0/1 Knapsack Problem  
    20.2.2 Matrix Multiplication Chains
    20.2.3 All-Pairs Shortest Paths
    20.2.4 Single-Source Shortest Paths with Negative Costs
    20.2.5 Noncrossing Subset of Nets
  20.3 References and Selected Readings
21 Backtracking (On the Web)
  21.1 The Method
  21.2 Applications
    21.2.1 Container Loading
    21.2.2 0/1 Knapsack Problem
    21.2.3 Max Clique
    21.2.4 Traveling Salesperson
    21.2.5 Board Permutation
22 Branch and Bound (On the Web)
  22.1 The Method
  22.2 Applications
    22.2.1 Container Loading
    22.2.2 0/1 Knapsack Problem
    22.2.3 Max Clique
    22.2.4 Traveling Salesperson  
    22.2.5 Board Permutation
Index
percent of women that cheat my husband cheated with a man married men affairs
open women who want to cheat how to cheat with a married woman
my fiance cheated on me open open
the pill for abortion the pill abortion where do i get the abortion pill
online women that cheat

`